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Abstract

Let U be an open subset of the torus group T
n

. We

show that the set of maximal subgroups of T
n which miss U

is of finite cardinality. This result is applied to show

that the lattice of finite unions of closed subgroups of T
n

is a complete distributive lattice, and to show that, up to

unimodular equivalence, there are only finitely many convex

polytopes P c IR
n having vertices in 7L

n but no interior

points in Z
n and such that each subgroup G of the

additive group IR
n which properly contains Z

n does have

points in common with the interior of P.
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FINITE UNIONS OF CLOSED SUBGROUPS

OF THE N-DIMENSIONAL TORUS

by Jim Lawrence

1 . Introduction .

Let x = (x.^, . . x^) be an element of IR
n and let

U C IR
n be an open neighborhood of 0. A classical theorem

of Dirichlet asserts that there exist a positive integer m

and a point z = (z^, . . z^) € Z
n such that mx - z € u.

The numbers x^, . . . , x
n

and 1 are independent over the

rational numbers if there is no w a Z
n ~ {0} such that

<w , x> £ Z . A classical theorem of Kronecker asserts that

the numbers x^, . . . , x
n , and 1 are independent over the

rational numbers if and only if for every open set U c !R
n

there exist a positive integer m and z e Z
n such that

mx - z e U . (These are Theorems 201 and 442 of [4]. See

also Chapter VII of [1].)

In this paper we consider, for open sets U C IR
n

, the

nature of the sets t (U) = (x e IR
n

: there exist m € Z and

n .
~

z e Z such that mx - z e U}. (Alternatively, t (U)

= {x e IR
n

: the (additive) group generated by {x} U Z
n

intersects U}.) We show that IR
n ~ t (U) is a finite union

of closed subgroups of IR
n

; and moreover, the set M(IR
n

, U)

of maximal subgroups G of IR
n such that G D U = 0 and

Z
n

c G, is finite. This is Corollary l.A, below.
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As an example, let n = 2 and let U = { (x, y) € IR :

0 < x, 0 < y, and x + y < 1). Then the subgroups H of

[R
2 such that Z

2 c H and H fl U = 0 are precisely the

subgroups of the following four groups:

H
1 = { (x, y) € IR

2
: X e Z},

H
2 = { (X, y) € IR

2
: y £ Z) ,

H = {(x, y) € [R
2

: x + y e Z), and

H = {(x, y) € IR
2

: 2x € Z and 2y e Z).

One of several interesting consequences of the general

finiteness result concerns subsets of the n-dimensional torus

group T
n

. It is obvious that these subsets form a finitely

distributive lattice under the operations of intersection and

union. It follows from the finiteness result that they

actually form a complete lattice: The intersection of an

arbitrary family of finite unions of closed subgroups of T
n

is again a finite union of closed subgroups of T
n

. (We will

have occasion in this paper to use the word "lattice" in two

different senses: We will use it as we have in this

paragraph, to mean a partially ordered set with certain

properties; we will also use it in its sense in the geometry

of numbers, to mean a discrete, full-dimensional subgroup of

[R
n

. The useage must be ascertained from the context.)

In Section 3 we present some consequences of these

results concerning finiteness of certain sets of unimodular

equivalence classes of polytopes with integer vertices.

This paper uses standard results concerning additive

subgroups of IR
n

. The best reference for this topic for our

purposes is Chapter VII of [1].
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Let ^ be the lattice of closed subgroups G of IR
n

such that Z
n C G. (We could equivalently work with closed

subgroups of the torus group T
n = [R

n
/Z n in view of the

bijective correspondence G -> tt(G) mapping the set of such

subgroups to the set of subgroups of T
n

, where it : lR
n

-» T
n

is the canonical map. We prefer to remain in IR
n

in order

to make easy use of results from the geometry of numbers.)

Let ^ be the lattice of closed subgroups of IR
n

. For

^
G € <3, let G = ( x € lR

n
: <x, u> € Z for each u e G}.

Then G is also in ^ and the map G -* G is an

anti-automorphism of . (See [1].)

.
The lattice satisfies the descending chain

condition; that is, each non-empty subset of <3 possesses a

minimal element. Equivalently, any chain 3 H
2

3 . . .

of distinct elements of <3 must be finite. To see this note

that c H
2

... would be an ascending chain of

subgroups of (Z
n

) * = Z
n

, which satisfies the ascending chain

condition, since it is a finitely generated abelian group.

For S C IR
n

, let pol(S) = (x € lR
n

: <x, y> < 1 for each

y € S). Then pol(S) is a closed, convex set which contains

the origin; pol(pol(S)) is the smallest closed, convex set

which contains S U (0); and pol is a dual automorphism of

the partially ordered set of closed, convex sets containing

the origin.
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Our objective now is to establish a lemma (Lemma 3)

which will be used in the proof in the next section of the

main result.

LEMMA 1 . Suppose that U is a convex subset of IR
n

and that p € U. if H is. a subgroup of IR
n such that

H fl (1/n (U - p) ) contains a basis for IR
n then

H + U = IR
n

.

Proof. Let {b- , . . . b } be a basis for IR
n contained in

1 n

H n (1/n (U - p) ) . Let P =
{ y a . b

.

: 0 < a. < 1 for

i = 1, . . . , n} . Then P C conv{0, nb^, * * •/ nt>
n )

C u - p. Any x e IR
n can be expressed in terms of the

basis: x = )
a.b. , i = 1, . . n. We then have:

L# .X. 1

X = ^ L^iJ }
(a

i
)b

i € H + P,

so H + P = [R
n

. (Here L
a

J denotes the greatest integer less

than or equal to a and (a) = a - [aj is the fractional

part of a.) It follows that H + (U - p) = [R
n

;

i.e. , H + U = IR
n

.

In the proof of Lemma 2 we will use a result of Mahler

belonging to the theory of successive minima. Recall that

for a lattice L C IR
n

, and a full-dimensional, compact,

convex set K symmetric about the origin, the successive

minima X , . . ., X
r

of L with respect to K are the

smallest real numbers such that (for each i) (X^K) fl L

contains a set of i linearly independent points.
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with

Let X, , . . . , and X be the successive minima of L
1 n

respect to K (as above) and let X
, . . and X^ be

the successive minima of L with respect to pol(K).

Mahler's result is that (for each i) one has

1 < X .X *
. _ < n! .

1 n-i+1 "

. 2
(In Mahler's original result, the right-hand bound was (n!) .

The statement as we have it is Theorem VI of Chapter VIII,

Section 5, of [2]. The right-hand bound has been

spectacularly improved by Lagarias, Lenstra, and Schnorr in

[5] .)

LEMMA 2. Let K be a full -dimensional . convex . compact set

with K = - K. Let H be a closed subgroup of IR
n such

that H D K does not contain a basis for IR
n

. Then
*

H fl (n! pol(K)) contains a non - zero element.

Proof. Suppose that there is a convex, full-dimensional,

compact set K symmetric about 0 and a closed subgroup H

such that H fl K contains no basis for IR
n and

*
H fl (n! pol(K)) = {0}. We may choose a basis

{x
x , . . ., x^} for IR

n such that

n

H =
( ^

a
i
x
i

: € Z for i = a + 1, . . . , b,

i=l

and a
^

= 0 for i = b + 1, . . . , n}.

Let L^ be the lattice generated by {x^/m, . . ., x /m,

x
a+1 , . . ., x^, • • •/ mx

n )* It i- s clear that we may
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choose m sufficiently large that L fl K contains no basism

for IR
n

, and L* n (n! pol(K)) = {0}. Let A^
. . . ,

A
,

A., , . . . , and A be the successive minima for L with1 ' ' n m
*

respect to K and for with respect to pol(K),

respectively. Since fl K contains no basis for IR
n

, we

have A^ > 1. Also L* D (n! pol(K)) = {0}, so A* > n!

.

. .
*

This contradicts Mahler's Theorem, since then A A_ > n! .
' n 1

LEMMA 3. Let G be a closed subgroup of IR
n

. Let U be a

subset of G which contains a non-empty relatively open set .

Then there is a bounded set X C IR
n such that if H is. a

,
*

closed subgroup of G for which H + U G then H D X is

*
not contained m G .

Proof. It is clear that, if A : IR
n

-* IR
n

is a nonsingular

linear transformation, then the statement holds for a given

group G and open set U C G if and only if it holds for

the images A(G) and A (U)

.

We may therefore suppose that

G = { (x
1 ,

and

. . , x )
€ IR

' n'
n

x
, , . . . , x, € Z

a+1, ' b

Xb+1 • • • x
n °)»

where a and b are integers for which 0 < a < b < n.

Let

A = { (x lf

B = { (X
x , .

. x ) € [R
n

: x. = 0 unless i < a},
' n 7 l -it

. , x ) € [R
n

: x . = 0 unless a < i < b},
' n' l J '
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and

C = { (x^, . . x^) € [R
n

: x^ = 0 unless b < i};

and let a : IR
n

-* A, (3 : [R
n

-> B, and nr : [R
n

-» C be the

obvious projections. Then we may write

G = { x € IR
n

: j3(x) € Z
n and -r (x) = 0}, and

G* = { x € IR
n

: a(x) = 0 and (3 (x) € Z
n
}.

Let P = { x € IR
n

: a (x) = nr (x) = 0 and 0 < (3 (x) < 1}.

*
Note that P fl G = {0}. If G is a discrete group, so that

a = 0 , then we may take X = P . Otherwise, let W be the

unit ball in A: W = { x € A : llxll < 1}. Let p € U and

choose e sufficiently small that eW C -

. Finally,

let X = (a!/e)W + P. Clearly X is bounded.

Suppose H is a closed subgroup of G such that

H + U G. We will show that (H* fl X) ~ G* ^ 0

.

Suppose (3 (H) is properly contained in (3(G) = Z
n

fl B.

It follows that H + A + C (= p
1

(j3 ( H) ) )
is properly

contained in G + A + C, so that H* D B = (H + A + C)

*

properly contains (G + A + C)
* = G* D B = Z

n
fl B. Choose

x € (H fl B) ~ (G* fl B) ; say,

x = (0, . . ., 0, x . . ., x^, 0, . . ., 0). Then

X = (0, . . .,o, [xa+1 J , . . Lxb J

,

o, . . 0) e z
n

n b

k ~
C H fl B, so x - x is a nonzero element of P which is in

H . Therefore x - x € (H* fl X) ~ G*.
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Finally, suppose /3(H) = j3(G). If aeW + (H (1 A) = A

then aeW +H=G so U+HD (aeW + p) + H = G, contrary to

our assumption. Therefore aeW + (H fl A) ? A, and we see by

invoking Lemma 1 that aW fl H contains no basis for A. By

Lemma 2 applied to A there is a nonzero vector in

(n!/e)W n (H fl A)* = (n!/e)W D (H* + B + C) ;

*
i.e., we may find x € H such that a (x) € (nl/a)W, a(x)

0. Suppose x = (x
1 , . . x

n ) . Then x = (0, . . 0,

Lxa+lJ ' • • • ' LxkJ / x
b+1

A
contains G ) ,

and x - x

(H fl X)
*

G .

* *
. . . , x )

€ H (since H

is the required element of
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3. Main Results and Corollaries .

Let G be a closed subgroup of [R
n

. Suppose U C G.

We shall call U full if its intersection with each closed

subgroup H of G is empty or contains a relatively open,

non-empty subset of H. In particular, open sets are full.

THEOREM 1. Suppose G is a closed subgroup of IR
n and U

is a full subset of G. Let M(G, U) be the set of maximal

subgroups H C G such that Z
n C H and H fl U = 0. Then

M (G, U) is of finite cardinality .

Proof. Let T denote the set of all closed subgroups G of

[R
n containing 2

n for which there exists a full subset

U C G M(G, U) is infinite. Suppose G € r and U is a

corresponding full subset. Clearly U j* 0 . By Lemma 3 there

is a bounded set X C lR
n such that if H is a closed

subgroup of G such that H + U ^ G then H* fl X £ G* . If

H € M(G, U) then H + U ^ G (since 0 € H + U) , so for such

H there is b € (H fl X) ~ G*. It follows that

M(G, . U) C U M(G
b , U

b )

,

b

where the union is taken over b e (H fl X) ~ G , G^ = ( x

£ G : <x, b> € JL)
, and = U fl G^. Notice that, for each

such b, G^ is a proper subgroup of G (since b € G )

.

Also, since Z
n

C H, it follows that H* C 7L
n

,
so H* D X is

finite. It follows that M (G
b , U) is of infinite

cardinality for some b € (H D X) ~ G , so that G^ € F .
/“V>



We have shown that r has no minimal element. By the

descending chain condition on <3, r = 0.

We present some corollaries of Theorem 1.

COROLLARY l.A. If U is a full subset of T
n then there

are only finitely many maximal closed subgroups H of T
n

such that H fl U = 0

.

COROLLARY l.B. Let S be a closed subset of T
n such that

if x € s and m is a positive integer then mx € s . Then

S is a finite union of closed subgroups of T
n

.

We now consider an order relation on open subsets of the

torus T
n

. For open subsets U and V of T
n we write

U < V if for each x € u there is a positive integer m

such that mx c V. We write U ^ V if U <. V and V U.

Then ~ is an equivalence relation on the set of open

subsets of T
n and induces a partial ordering on the set

£ of equivalence classes. We wish to study this partially

ordered set.
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For open subsets U of T
n let t (U) denote the

complement of the union of the closed subgroups G of T
n

such that G fl U = 0. We see from Theorem 1 that t (U) is

open. Perhaps it is easier to derive this fact as a

consequence of the following lemma.

LEMMA 4. t (U) = { x € T
n

: there is m € Z, m > 0, such that

mx € u }

.

Proof. Certainly if there is a positive integer m such

that mx € u then each subgroup G C T
n such that x € G

intersects U nontrivially , so x € t (U)

.

Suppose no such

m exists. The closure of the set { mx : m € 2, m > 0} is

then a closed subgroup G of T
n which .misses U. Since

x € G, x € t (U) .

We see that t is an algebraic closure operator on the

collection of all open subsets of T
n

: U C t (U) for each

open set U; if U C V then t (U) C t (V)

;

and

t
(
t (U)

)
= t (U)

,

for each open set U. Also from the lemma it

is immediate that t (U) is the largest open set such that

t (U) < U. The following theorem, which is now immediate,

characterizes the partial ordering of 2 induced by ^ .



thenTHEOREM 2 . lf_ U and V are open subsets of T
n

U -< V if; and only if t (U) C t (V) , and U ~ V if, and only

if t (U) = t (V)

.

The partially ordered set £ is dually

isomorphic to the partially ordered set of finite unions of

closed subgroups of T
n (under inclusion ) . This partially

ordered set is a finitely distributive complete lattice .

Finally we wish to establish a chain condition for this

lattice

.

THEOREM 3 . Let

open subsets of

T (U
M^

= T
^UM+1^

Proof. Let T

such that there

r(U
1 )

C r(U
2 )

C

t (U.

)

D T
n ~ G.

m
= n (T

n ~ g.)
-i=1 -I

U
1

C U
2

C . . . be an ascending seguence of

T
n

. Then there is an integer M such that

o c c • ,

denote the set of closed subgroups G of T
n

exists an infinite ascending chain

. . . of distinct T-closed open sets

We may write t(U
1 )

= T
n ~ (G^ U . . . U G )

for some closed subgroups G^, . . G .

m
,nThen r(U.) = r(U.) U r(U )

= fl (r (U. )
U (T

j=l J

clear that for some j the seguence of sets

G
. ) ) • it is

t (U
i ) U (T

n ~ Gj) 2 T
n

G. must contain an infinite
3

subsequence of distinct T-closed open sets. Since G.

properly contains G f we see that T contains no maximal

element. By the chain condition on the closed subgroups of

,n
T , it follows that r = 0 .
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4. Some Consequences and Related Results .

LEMMA 5. Let Un =
{ (x. , . . x ) € IR

n
: x. > 0 for

l n l

i = 1 /
• • . , n and x^j^ + . . + x < 1 ) . There is a

n 1

number >( < 1 such that if Gr is a arouo for which

l
n c G C IR

n and G n Un 0 then there is a ooint

(x
1 , . • • r x )

€ g n un
n ‘ for which x_ + . . . + x < x

1 n - A

Proof

.

Consider the sequence

t (1/2 Un )
C t (2/3 Un )

C t (3/4 Un )
C . . . .

By Theorem 3 there is an m such that

T(m/(m + 1) Un )
= T((m + l)/(m + 2) U

n
)

= . . ..

We may set x = m/(m + 1) .

In general it seems difficult to find a value for x*

We know that for n = 1 we can take x = 1/2; for n = 2,

X = 5/6. Any value for n = 3 must satisfy x > 41/42, but

we do not know a value even in this case.

Let x n
denote the least value for x satisfying Lemma

5. It is easy to see that x R < x n+1 for n = 1, 2, . . .,

for if G C IR
n

is a group such that G fl Un ^ 0 and G D (a

U
n

)
= 0 then G x [R has the analogous properties in IR

n+1
.

For S C IR
n denote by S° its interior. For a convex

polytope K c IR
n denote by vert(K) its vertex set.
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LEMMA 6 . Let k = [ 1 . Suppose the convex
1 " X 2n-2

polytope K, having vert(K) C Z
n

,
contains at least

(1 + k)
n

+ 1 points of Z
n

, and K° D Z
n = 0. Then there is

a linear function A : lR
n

-> IR
n 1 such that A(Z n

)
= Z

n 1

and A (K)

°

n Zn_1 = 0.

Proof. Clearly some pair of points of K fl Z
n must be

congruent modulo 1 + k; the line L containing these

satisfies |L fl K fl Z
n

|
> k + 2. Let u, w € Z

n be such

that u, u + w, u + 2w, . . and u + (k+l)w are consective

points of L fl K fl Z
n

. We may choose a basis

{w, b
2

, b
3

, . . . , b^} for Z
n which contains w. For

x = a_w + a.b^ + . . . + a b € Z
n

, let12 2 n n

A(x) = (
a
2 ' * • • /

a
n )

€ Then A : IR
n

-* ER
n 1

is a

linear function such that A(Z n
)

= Z
n 1

.

We will complete the proof by showing that if

A (K) ° fl Z
n 1

? 0 then K° fl Z
n

^ 0. Suppose

p € A(K)° D Z
n 1

. Then by a theorem of Steinitz ([6]; see

also Exercise 2.3.5 of [3]) we may choose a set of

m < 2(n - 1) vertices of A(K)

,

say, (A(v
1 ) , . . ., A(vm )},

where v- , . . . . and v are vertices of K, such that p

is in the interior of convfACv^, . . A(vm )}. We may

find a
, . . ., a , and (3 , where > 0 (i = 1, . . . , m) ,

m m

( 1
a
i ) + P = 1, and p =

( J
A(v

i ) ) + p (A(u)).

i=l i=l

P > o,
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Let G c !R
m be the subgroup

m

G = { ( Ul , . . vm ) : l Ui (A(v.) - A (u) )
€ Z

n-1
}.

i=l

Clearly G D Z
m

, and (a
, . . . , a^) € G. By Lemma 5 it is

/V /V 'V

possible to choose (a. , . . . , a )
€ G such that a.

v 1' ' irr l
> 0

for 1 < i < m and a. + . . . + a < x < x , > .

1 m m 2 ( n-l

)

Let

/V

p =
'V

1 - a
^

- . • • - ^ 1 - * 2 (n-2)
> l/(k + 1) . Consider

m m

X =
) a.v. +
L ii pu and y = J a.v. + P ( u + (k + i) w

)
Lmi J. 1.

i=l i=l

= X + j3(k + l)w. Suppose x = t.w + T_b_ + . . . t bcir 1 2 2 n n , so

that A (x) = (T 2' • • • f • Since * * * r
€ G,

T
2 ' . . . , and T

n
are integers. Since p (k + 1) > 1, there

is an integer T
1

such that t < t < t + p (k + l)

.

Then

z = T
1
W + T

2
b
2

+ . . + t b € Z
n

is in the relative
n n

interior of the line segment connecting x and y, so

z € K° fl Z
n

.

THEOREM 4. There are . up to unimodular equivalence , only

finitely many convex polvtopes P satisfying :

(i) vert(P) C Z
n

;

(ii) P° fl Z
n = 0; and

(iii) P° fl G ^ 0 , for each group G C [R
n which

properly contains Z
n

.

Proof. After Lemma 6, we need only show that there are only

finitely many equivalence classes of such P for which



|

p n Z
n

|

< m (where m = (1 + k)
n + 1 as in Lemma 6)

.

Indeed , if |

P

n Z
n

|

> m and if P satisfies (i) and (ii)

then A 1
(Z

n X
)

is a subgroup G of IR
n for which (iii)

fails, where A is the linear function guaranteed by the

lemma

.

Suppose that P and Q are convex polytopes, each

satisfying conditions (i), (ii), and (iii), and neither

having m or more elements in common with Z
n

. Let

u
n = {(x

1
xm_ 2 )

e R
m~ 2

: > o

for 1 < i < m - 2 and x_ + . . . + x 0 < 1 } .

1 m-2

Let B : IR
m 2

-» IR
n and C : IR

m 2
-* IR

n be affine functions

mapping cl(Un ) onto P and Q respectively and mapping

Z
m 2 onto 'Z

n
. The subgroups G = B

1
(Z

n
) and H = C

1
(Z

n
)

then miss U, and are maximal such subgroups. If G = H

then there is an affine unimodular function D : IR
n

-» IR
n

such that B = DC. In particular, DQ = P.

m. 2
By Theorem 1, the number of maximal subgroups G D Z

such that G fi U = 0 is finite. We see from the preceding

paragraph that this number is an upper bound on the

cardinality of any collection of unimodularly inequivalent

convex polytopes P satisfying (i), (ii), (iii), and -

| vert (P)
|

< m.
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5 . Unanswered Questions .

In this final section we present some problems and

questions that seem natural but with which we have not dealt.

A. Is there a reasonable method for computing the

finitely many groups of Theorem 1 — say, when the dimension

n is small and the set U is the interior of a convex

polytope?

B. Compute x ; or at least find numbers that can serve

as the x's of Lemma 5. (We know x 1
= 1/2, x 2

= 5/ 6 /

X

^

> 4 1/42 , . . . .

)

C. Find the convex polytopes P of Theorem 4, when

(say) n = 3. (For n = 1, there is, up to unimodular

equivalence, only the interval [0, 1]; for n = 2, only

0 2 0

.
0

.

t

.
0

.

!

.
2

.
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